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LETTER TO THE EDITOR

Quasiperiodic icosahedral tilings from the six-dimensional
bcc lattice

Z Papadopolos, R Klitzing and P Kramer

Institut fur Theoretische Physik, Univerait Tubingen, Auf der Morgenstelle 14, D-72076
Tubingen, Germany

Received 3 December 1996

Abstract. The cell geometry of the six-dimensional bcc lattice is investigated. Via klotz
construction two different classes of icosahedrally projected quasiperiodic tilings are defined.
For both cases we determine the acceptance domains of tiles and give a detailed description of
the geometry of all tiles.

1. Introduction

As has been shown by Rokhsat al [1], there exist only three icosahedral modules (in
R3) of rank 6. They can be obtained by icosahedral projection from the six-dimensional
(6D) primitive cubic latticeP, i.e. Z°, the face-centred cubic latticgF2i.e. the root lattice

Ds, and the body-centred cubic lattide (reciprocal to Z), i.e. the weight latticeDZ,
respectively. The icosahedral projection from 6D to 3D space is defined by a particular
embedding, [31], of the 3D faithful representation of the symmetry groufs, of the
icosahedron in the 6D representation of the higher-dimensional (6D) ldfficé)s or DE,

see [2-4]. The 6D space splits B8 = E; @ E,, whereE, is the representation space of
[31&], the (physical) space of the quasiperiodic tiling, did is the representation space

of [312], the (internal) space of the coding [3,5]. In the projection procedure from the
6D lattice we define two local isomorphism (LI) classes of tilings [3,B]and 7*: the

tiles of the LI classT in E; are icosahedrally projected 3D boundaries of the Voronoi cell
Py(3) and are coded by icosahedrally projected dual bound#@i¢8) within E,, cf [5];

the tiles of the LI clasg™* are the icosahedrally projected 3D boundaries of the Delaunay
cells P;(3), coded byP, (3). Note that the tilingsZ and 7™ coincide only in the case of

7®8. Quasiperiodic tilings obtained by icosahedral projection fiéfnand from Dg have
been studied extensively [2—4, 7-9].

2. To the tiles and tilings 7" and 7*®

We now consider quasiperiodic tilings obtained by icosahedral projection from the weight
lattice D§. By various methods [10,11] we have determined, in 6D, the hierarchy
of boundaries of the Voronoi cell, a polytope with Siftil symbol {224}, and of the
Delaunay cells, one representative of which being the convex hull of the 16 points
{3(£1,£1,41,0,0,00} U {5(0, 0,0, £1, £1, £1)}, more details can be found in table 1.
Here we only describe the 3D boundari#¢3) and P*(3). The 3D boundaries of the
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Table 1. The incidence matrices of the 6D topology for the Voronoi cEl,(above) and one
representative Delaunay celb, (below). EntriesV;; are to be read as follows: eattboundary
coincides withN;; j-boundariesV; counts the total number éfboundaries. The boundaries
are subdivided into different orbits with respect to the pointgroup.

Vv 0D 1D 2D 3D 4D 5D
0D 160 18 36 8 24 6 36 3 24 12 8 3
1D 2 1440 4 2 4 1 8 1 8 4 4 2
2D 3 3 1920 — 2 0 2 1 4 1 2 2
3 3 — 960 0 1 4 0 4 4 4 1
3D 4 6 4 0 960 — — 1 2 0 1 2
4 6 0 4 — 240 — 0 0 4 4 0
6 12 4 4 — — 960 0 2 1 2 1
4D 8 24 32 0 16 0 0 60 — — 0 2
10 30 20 10 5 0 5 — 384 — 1 1
10 30 10 20 0 5 5 — — 192 2 0
5D 20 90 60 60 15 15 30 0 6 6 64 —_
40 240 320 80 160 0 80 10 32 0 — 12
D 0D 1D 2D 3D 4D 5D
0D 8 — 3 0 8 24 12 3 0 6 24 36 18 36 18
— 8 0 3 8 12 24 0 3 24 6 36 36 18 18
1D 2 0 12 —_ - 8 0 2 0 0 16 12 6 24 12
0 2 — 12 — 0 8 0 2 16 0 12 24 6 12
1 1 — — 64 3 3 0 0 3 3 9 9 9 9
2D 2 1 1 0 2 ) —_- - = 0 2 3 3 6 6
1 2 0 1 2 — 96 _- - 2 0 3 6 3 6
4 0 4 0 0 —_- - 6 — 0 8 0 0 12 6
0 4 0 4 0 _ - - 6 8 0 0 12 0 6
3D 1 4 0 4 4 0 4 0 1 48 — — 3 0 3
4 1 4 0 4 4 0 1 0 — 48 —_ 0 3 3
2 2 1 1 4 2 2 0 0 — — 144 2 2 4
4D 2 4 1 4 8 4 8 0 1 2 0 4 72 — 2
4 2 4 1 8 8 4 1 0 0 2 4 — 72 2
5D 4 4 4 4 16 16 16 1 1 4 4 16 4 4 36

Voronoi cell, P(3) ¢ V(0), are 1200 tetrahedrd§ and 960 octahedraX), all with edges
of the same length/A/2 (scaled such that the primitive basisZf, ¢;, i =1, ..., 6, obeys
(ei, ;) = §;;). There are 10 congruent Delaunay cell)’, j = 1,...,10. Each one has,
as 3D boundarie®*(3) c DV, 96 pyramidsT™* and 144 tetrahedr@*. Each pyramidr'*
has, as a base, the square of edge length 1, the lateral edges have/8p@th

The icosahedrally projected Delaunay cdﬂ§) are the vertex windows or acceptance
domains for the tilings in the LI class”. D'’ has the shape of the scalenohedron with the
symmetryDs, (see figure 1) and the clags” does not contain a non-singular tiling with
global icosahedral symmetry Moreover, it does not even contain a hon-singular tiling with
global D3, symmetry. The tiles off /) are Py(3), i.e. icosahedrally projected tetrahedra
T, and octahedraD;. The tetrahedrd show five forms. One of them is degenerate,
which we can simply remove here because they are not needed for the cell construction
[5]. The other four,7;,i = 1,...,4, coincide with the tilesA], B}, C;, and D} of the

1 Even a singular one is impossible if the 10 translation classes are distinguished, as the group thatggﬁerate
is the Weyl group of the diagram [143 x Az, so does not allow the embedding Bf. On the other hand, no
tile has icosahedral symmetry.
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Figure 1. The Delaunay ceID(j) in two board projection.
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Figure 2. The tiles of 7", 0;; (i=1,..., 4), in an orthogonal projection.

tiling [3] 7+ (scaled by a factog). The octahedra); appear in five forms, again one
degenerate; the othay;, i = 1,...,4 are shown in figure 2. The shapes of them are
all double pyramids, point symmetric with respect to the centre of the base. All edges are
parallel to 2-fold symmetry axes of an icosahedron, and only two different edge lengths
occur,@ = %\/m andrt @ 7 the golden ratip. The generating pyramids @y
and O4 have rectangular bases and small/long lateral edges, respectively; thOggaofd
O3 are obliqgue and based on a small/big square, respectively.

The icosahedrally projected Voronoi céll (0) forms a dodecahedron with edge length
T m It is the vertex window (or acceptance domain) of the LI cl@g8’. This class

T Note that the smallest inflation factor of the icosahedrally proje@§dis t, just as forDe.
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Figure 3. The unfolded tetrahedr@’,,i =1, ..., 4.

i

contains (up to translations) one tiling with global icosahedral symmetry. The tiles are four
non-degenerate pyramidg;, i = 1,..., 4, coinciding with four out of the six tiles [4] of
T7@H  and, in addition, four non-degenerate tetrahedry, i = 1,...,4 (the latter are
shown in figure 3). All edges (of}} and O},i = 1,...,4) are either parallel to 3-fold

i il
directions of an icosahedron (——) with two different edge Iength@ =1/6/c+2)
and 7 - @ or parallel to 5-fold directions (- ——) with three different edge lengths
@ =1/v2, 1. @ andr - @ Within figure 3, scalings by powers af with
respect to a standard leng{B) and(3) are marked.

3. Conclusion

The icosahedral quasicrystals related to freand 2F-module, icosahedrally projected from

the Z8 and D¢ lattice, respectively, have been experimentally observed (see for example
[12,13]). No quasicrystals related to thenodule, projected from th®¥ lattice have been
observed so far. Nevertheless, the above introduced new classes of Tiliigand 7*()

are also of interest for further investigations as mathematical structures.
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