

Home Search Collections Journals About Contact us My IOPscience

Quasiperiodic icosahedral tilings from the six-dimensional bcc lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1997 J. Phys. A: Math. Gen. 30 L143 (http://iopscience.iop.org/0305-4470/30/6/006)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.112 The article was downloaded on 02/06/2010 at 06:13

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Quasiperiodic icosahedral tilings from the six-dimensional bcc lattice

Z Papadopolos, R Klitzing and P Kramer

Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany

Received 3 December 1996

Abstract. The cell geometry of the six-dimensional bcc lattice is investigated. Via klotz construction two different classes of icosahedrally projected quasiperiodic tilings are defined. For both cases we determine the acceptance domains of tiles and give a detailed description of the geometry of all tiles.

1. Introduction

As has been shown by Rokhsar *et al* [1], there exist only three icosahedral modules (in \mathbb{R}^3) of rank 6. They can be obtained by icosahedral projection from the six-dimensional (6D) primitive cubic lattice P, i.e. \mathbb{Z}^6 , the face-centred cubic lattice 2F, i.e. the root lattice D_6 , and the body-centred cubic lattice I (reciprocal to 2F), i.e. the weight lattice D_6^R , respectively. The icosahedral projection from 6D to 3D space is defined by a particular embedding, $[31_{\perp}^2]$, of the 3D faithful representation of the symmetry group, Y_h , of the icosahedron in the 6D representation of the higher-dimensional (6D) lattice, \mathbb{Z}^6 , D_6 or D_6^R , see [2–4]. The 6D space splits as $\mathbb{E}^6 = \mathbb{E}_{\parallel} \oplus \mathbb{E}_{\perp}$, where \mathbb{E}_{\parallel} is the representation space of $[31_{+}^{2}]$, the (physical) space of the quasiperiodic tiling, and \mathbb{E}_{\perp} is the representation space of $[31_{-}^{2}]$, the (internal) space of the coding [3, 5]. In the projection procedure from the 6D lattice we define two local isomorphism (LI) classes of tilings [3,6], \mathcal{T} and \mathcal{T}^{\star} : the tiles of the LI class \mathcal{T} in \mathbb{E}_{\parallel} are icosahedrally projected 3D boundaries of the Voronoi cell $P_{\parallel}(3)$ and are coded by icosahedrally projected dual boundaries $P_{\perp}^{\star}(3)$ within \mathbb{E}_{\perp} , cf [5]; the tiles of the LI class \mathcal{T}^{\star} are the icosahedrally projected 3D boundaries of the Delaunay cells $P_{\parallel}^{\star}(3)$, coded by $P_{\perp}(3)$. Note that the tilings \mathcal{T} and \mathcal{T}^{\star} coincide only in the case of \mathbb{Z}^6 . Quasiperiodic tilings obtained by icosahedral projection from \mathbb{Z}^6 and from D_6 have been studied extensively [2-4, 7-9].

2. To the tiles and tilings $\mathcal{T}^{(I)}$ and $\mathcal{T}^{\star(I)}$

We now consider quasiperiodic tilings obtained by icosahedral projection from the weight lattice D_6^R . By various methods [10,11] we have determined, in 6D, the hierarchy of boundaries of the Voronoi cell, a polytope with Schläfli symbol $\{^{33}_{334}\}$, and of the Delaunay cells, one representative of which being the convex hull of the 16 points $\{\frac{1}{2}(\pm 1, \pm 1, \pm 1, 0, 0, 0)\} \cup \{\frac{1}{2}(0, 0, 0, \pm 1, \pm 1, \pm 1)\}$, more details can be found in table 1. Here we only describe the 3D boundaries P(3) and $P^*(3)$. The 3D boundaries of the

0305-4470/97/060143+05\$19.50 © 1997 IOP Publishing Ltd

L143

V	0D 11		1D	D 2D		3		3D	3D		4D	4D		5D	
0D	160		18	36	8	2	24	6	36	3	24	12		8	3
1D	2	14	40	4	2		4	1	8	1	8	4		4	2
2D	3		3	1920	_		2	0	2	1	4	1		2	2
	3		3	_	960		0	1	4	0	4	4		4	1
3D	4	4 6		4	0	960		_	_	1	2	0		1	2
	4 6		0	4	—		240		0	0	4		4	0	
	6	6 12		4	4	—			960	0	2	1		2	1
4D	8	24		32	0	16		0	0	60	—	—		0	2
	10	30		20	10		5	0	5	_	384	—		1	1
	10	30		10	20	0		5	5	_	—	192		2	0
5D	20	.0 90		60	60	15		15	30	0	6	6	6 64		
	40 240		320	80	160		0	80	10	32	0	-		12	
D	0D 1D			2D				3D			4	4D 5D			
0D	8		3	0	8	24	12	3	0	6	24	36	18	36	18
		8	0	3	8	12	24	0	3	24	6	36	36	18	18
1D	2	0	12	—	_	8	0	2	0	0	16	12	6	24	12
	0	2		12	_	0	8	0	2	16	0	12	24	6	12
	1	1	—	_	64	3	3	0	0	3	3	9	9	9	9
2D	2	1	1	0	2	96	—	—		0	2	3	3	6	6
	1	2	0	1	2		96	—		2	0	3	6	3	6
	4	0	4	0	0	—	—	6	—	0	8	0	0	12	6
	0	4	0	4	0	—	—	—	6	8	0	0	12	0	6
3D	1	4	0	4	4	0	4	0	1	48	—	—	3	0	3
	4	1	4	0	4	4	0	1	0	—	48	—	0	3	3
	2	2	1	1	4	2	2	0	0	—	—	144	2	2	4
4D	2	4	1	4	8	4	8	0	1	2	0	4	72	_	2
	4	2	4	1	8	8	4	1	0	0	2	4		72	2
5D	4	4	4	4	16	16	16	1	1	4	4	16	4	4	36

Table 1. The incidence matrices of the 6D topology for the Voronoi cell, V, (above) and one representative Delaunay cell, D, (below). Entries N_{ij} are to be read as follows: each *i*-boundary coincides with N_{ij} *j*-boundaries; N_{ii} counts the total number of *i*-boundaries. The boundaries are subdivided into different orbits with respect to the pointgroup.

Voronoi cell, $P(3) \subset V(0)$, are 1200 tetrahedra (*T*) and 960 octahedra (*O*), all with edges of the same length $1/\sqrt{2}$ (scaled such that the primitive basis of \mathbb{Z}^6 , e_i , i = 1, ..., 6, obeys $(e_i, e_j) = \delta_{ij}$). There are 10 congruent Delaunay cells, $D^{(j)}$, j = 1, ..., 10. Each one has, as 3D boundaries $P^*(3) \subset D^{(j)}$, 96 pyramids T^* and 144 tetrahedra O^* . Each pyramid T^* has, as a base, the square of edge length 1, the lateral edges have length $\sqrt{3/2}$.

The icosahedrally projected Delaunay cells $D_{\perp}^{(j)}$ are the vertex windows or acceptance domains for the tilings in the LI class $\mathcal{T}^{(I)}$. $D_{\perp}^{(j)}$ has the shape of the scalenohedron with the symmetry D_{3v} (see figure 1) and the class $\mathcal{T}^{(I)}$ does not contain a non-singular tiling with global icosahedral symmetry[†]. Moreover, it does not even contain a non-singular tiling with global D_{3v} symmetry. The tiles of $\mathcal{T}^{(I)}$ are $P_{\parallel}(3)$, i.e. icosahedrally projected tetrahedra T_{\parallel} and octahedra O_{\parallel} . The tetrahedra T_{\parallel} show five forms. One of them is degenerate, which we can simply remove here because they are not needed for the cell construction [5]. The other four, $T_{i\parallel}$, $i = 1, \ldots, 4$, coincide with the tiles A_{\parallel}^{*} , B_{\parallel}^{*} , C_{\parallel}^{*} , and D_{\parallel}^{*} of the

[†] Even a singular one is impossible if the 10 translation classes are distinguished, as the group that generate $D_{\perp}^{(j)}$ is the Weyl group of the diagram [11] $A_3 \times A_3$, so does not allow the embedding of Y_h . On the other hand, no tile has icosahedral symmetry.

Figure 1. The Delaunay cell $D_{\perp}^{(j)}$ in two board projection.

Figure 2. The tiles of $\mathcal{T}^{(I)}$, $O_{i\perp}$ (i = 1, ..., 4), in an orthogonal projection.

tiling [3] $\mathcal{T}^{\star(2F)}$ (scaled by a factor $\frac{1}{2}$). The octahedra O_{\parallel} appear in five forms, again one degenerate; the other $O_{i\parallel}$, $i = 1, \ldots, 4$ are shown in figure 2. The shapes of them are all double pyramids, point symmetric with respect to the centre of the base. All edges are parallel to 2-fold symmetry axes of an icosahedron, and only two different edge lengths occur, $\boxed{2} = \frac{1}{2}\sqrt{2/(\tau+2)}$ and $\tau \cdot \boxed{2}$, τ the golden ratio[†]. The generating pyramids of $O_{2\parallel}$ and $O_{4\parallel}$ have rectangular bases and small/long lateral edges, respectively; those of $O_{1\parallel}$ and $O_{3\parallel}$ are oblique and based on a small/big square, respectively.

The icosahedrally projected Voronoi cell $V_{\perp}(0)$ forms a dodecahedron with edge length $\tau \cdot \boxed{2}$. It is the vertex window (or acceptance domain) of the LI class $\mathcal{T}^{\star(I)}$. This class

[†] Note that the smallest inflation factor of the icosahedrally projected D_6^R is τ , just as for D_6 .

Figure 3. The unfolded tetrahedra $O_{i\parallel}^{\star}$, $i = 1, \ldots, 4$.

contains (up to translations) one tiling with global icosahedral symmetry. The tiles are four non-degenerate pyramids $T_{i\parallel}^{\star}$, i = 1, ..., 4, coinciding with four out of the six tiles [4] of $\mathcal{T}^{(2F)}$, and, in addition, four non-degenerate tetrahedra, $O_{i\parallel}^{\star}$, i = 1, ..., 4 (the latter are shown in figure 3). All edges (of $T_{i\parallel}^{\star}$ and $O_{i\parallel}^{\star}$, i = 1, ..., 4) are either parallel to 3-fold directions of an icosahedron (— · —) with two different edge lengths (3) = $\frac{1}{2}\sqrt{6/(\tau+2)}$ and $\tau \cdot (3)$, or parallel to 5-fold directions (– –) with three different edge lengths (5) = $1/\sqrt{2}$, $\tau^{-1} \cdot (5)$ and $\tau \cdot (5)$. Within figure 3, scalings by powers of τ with respect to a standard length (5) and (3) are marked.

3. Conclusion

The icosahedral quasicrystals related to the *P*- and 2*F*-module, icosahedrally projected from the \mathbb{Z}^6 and D_6 lattice, respectively, have been experimentally observed (see for example [12, 13]). No quasicrystals related to the *I*-module, projected from the D_6^R lattice have been observed so far. Nevertheless, the above introduced new classes of tilings $\mathcal{T}^{(I)}$ and $\mathcal{T}^{\star(I)}$ are also of interest for further investigations as mathematical structures.

References

- [1] Rokhsar D S, Mermin N D and Wright D C 1987 Phys. Rev. B 35 5487
- [2] Kramer P and Neri R 1984 Acta Crystallogr. A 40 580
- [3] Kramer P, Papadopolos Z and Zeidler D 1991 Symmetries of icosahedral quasicrystals Symmetries in Science V: Algrebraic Structures, their Representations, Realizations and Physical Applications ed B Gruber et al (New York: Plenum) p 395
- Kramer P, Papadopolos Z and Zeidler D 1992 The root lattice D₆ and icosahedral quasicrystals Group Theory in Physics (AIP Conf. Proc. 266) ed A Frank et al (New York: AIP) p 179
- [5] Kramer P and Schlottmann M 1989 J. Phys. A: Math. Gen. 22 L1097
- [6] Baake M, Schlottmann M and Jarvis P D 1991 J. Phys. A: Math. Gen. 24 4637
- [7] Papadopolos Z, Kramer P and Zeidler D 1993 J. Non-Cryst. Solids 153&154 215
- [8] Kramer P, Papadopolos Z, Schlottmann M and Zeidler D 1994 J. Phys. A: Math. Gen. 27 4505

- [9] Kramer P and Papadopolos Z 1994 The Mosseri-Sadoc tilings derived from the root lattice D₆ Can. J. Phys. 72 408
- [10] Coxeter H S M 1973 Regular Polytopes 3rd edn (New York: Dover) Conway J H and Sloane N J A 1988 Sphere Packings, Lattices and Groups (New York: Springer)
- [11] Moody R V and Patera J 1997 Voronoi domains and dual cells in the generalized kaleidoscope with applications to root and weight lattices *Preprint* CRM-1803
- [12] Shechtman D et al 1984 Phys. Rev. Lett. 53 1951
- [13] Guryan C A et al 1989 Phys. Rev. Lett. 62 2409