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LETTER TO THE EDITOR

Quasiperiodic icosahedral tilings from the six-dimensional
bcc lattice

Z Papadopolos, R Klitzing and P Kramer
Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, D-72076
Tübingen, Germany

Received 3 December 1996

Abstract. The cell geometry of the six-dimensional bcc lattice is investigated. Via klotz
construction two different classes of icosahedrally projected quasiperiodic tilings are defined.
For both cases we determine the acceptance domains of tiles and give a detailed description of
the geometry of all tiles.

1. Introduction

As has been shown by Rokhsaret al [1], there exist only three icosahedral modules (in
R3) of rank 6. They can be obtained by icosahedral projection from the six-dimensional
(6D) primitive cubic latticeP , i.e.Z6, the face-centred cubic lattice 2F , i.e. the root lattice
D6, and the body-centred cubic latticeI (reciprocal to 2F ), i.e. the weight latticeDR

6 ,
respectively. The icosahedral projection from 6D to 3D space is defined by a particular
embedding, [312+], of the 3D faithful representation of the symmetry group,Yh, of the
icosahedron in the 6D representation of the higher-dimensional (6D) lattice,Z6, D6 or DR

6 ,
see [2–4]. The 6D space splits asE6 = E‖ ⊕ E⊥, whereE‖ is the representation space of
[312
+], the (physical) space of the quasiperiodic tiling, andE⊥ is the representation space

of [312
−], the (internal) space of the coding [3, 5]. In the projection procedure from the

6D lattice we define two local isomorphism (LI) classes of tilings [3, 6],T and T ?: the
tiles of the LI classT in E‖ are icosahedrally projected 3D boundaries of the Voronoi cell
P‖(3) and are coded by icosahedrally projected dual boundariesP ?⊥(3) within E⊥, cf [5];
the tiles of the LI classT ? are the icosahedrally projected 3D boundaries of the Delaunay
cells P ?‖ (3), coded byP⊥(3). Note that the tilingsT andT ? coincide only in the case of
Z6. Quasiperiodic tilings obtained by icosahedral projection fromZ6 and fromD6 have
been studied extensively [2–4, 7–9].

2. To the tiles and tilingsT (I) and T ?(I)

We now consider quasiperiodic tilings obtained by icosahedral projection from the weight
lattice DR

6 . By various methods [10, 11] we have determined, in 6D, the hierarchy
of boundaries of the Voronoi cell, a polytope with Schläfli symbol {33

334}, and of the
Delaunay cells, one representative of which being the convex hull of the 16 points
{ 12(±1,±1,±1, 0, 0, 0)} ∪ { 12(0, 0, 0,±1,±1,±1)}, more details can be found in table 1.
Here we only describe the 3D boundariesP (3) and P ?(3). The 3D boundaries of the
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Table 1. The incidence matrices of the 6D topology for the Voronoi cell,V , (above) and one
representative Delaunay cell,D, (below). EntriesNij are to be read as follows: eachi-boundary
coincides withNij j -boundaries;Nii counts the total number ofi-boundaries. The boundaries
are subdivided into different orbits with respect to the pointgroup.

V 0D 1D 2D 3D 4D 5D

0D 160 18 36 8 24 6 36 3 24 12 8 3
1D 2 1440 4 2 4 1 8 1 8 4 4 2
2D 3 3 1920 — 2 0 2 1 4 1 2 2

3 3 — 960 0 1 4 0 4 4 4 1
3D 4 6 4 0 960 — — 1 2 0 1 2

4 6 0 4 — 240 — 0 0 4 4 0
6 12 4 4 — — 960 0 2 1 2 1

4D 8 24 32 0 16 0 0 60 — — 0 2
10 30 20 10 5 0 5 — 384 — 1 1
10 30 10 20 0 5 5 — — 192 2 0

5D 20 90 60 60 15 15 30 0 6 6 64 —
40 240 320 80 160 0 80 10 32 0 — 12

D 0D 1D 2D 3D 4D 5D

0D 8 — 3 0 8 24 12 3 0 6 24 36 18 36 18
— 8 0 3 8 12 24 0 3 24 6 36 36 18 18

1D 2 0 12 — — 8 0 2 0 0 16 12 6 24 12
0 2 — 12 — 0 8 0 2 16 0 12 24 6 12
1 1 — — 64 3 3 0 0 3 3 9 9 9 9

2D 2 1 1 0 2 96 — — — 0 2 3 3 6 6
1 2 0 1 2 — 96 — — 2 0 3 6 3 6
4 0 4 0 0 — — 6 — 0 8 0 0 12 6
0 4 0 4 0 — — — 6 8 0 0 12 0 6

3D 1 4 0 4 4 0 4 0 1 48 — — 3 0 3
4 1 4 0 4 4 0 1 0 — 48 — 0 3 3
2 2 1 1 4 2 2 0 0 — — 144 2 2 4

4D 2 4 1 4 8 4 8 0 1 2 0 4 72 — 2
4 2 4 1 8 8 4 1 0 0 2 4 — 72 2

5D 4 4 4 4 16 16 16 1 1 4 4 16 4 4 36

Voronoi cell,P(3) ⊂ V (0), are 1200 tetrahedra (T ) and 960 octahedra (O), all with edges
of the same length 1/

√
2 (scaled such that the primitive basis ofZ6, ei, i = 1, . . . ,6, obeys

(ei, ej ) = δij ). There are 10 congruent Delaunay cells,D(j), j = 1, . . . ,10. Each one has,
as 3D boundariesP ?(3) ⊂ D(j), 96 pyramidsT ? and 144 tetrahedraO?. Each pyramidT ?

has, as a base, the square of edge length 1, the lateral edges have length
√

3/2.
The icosahedrally projected Delaunay cellsD(j)

⊥ are the vertex windows or acceptance
domains for the tilings in the LI classT (I ). D(j)

⊥ has the shape of the scalenohedron with the
symmetryD3v (see figure 1) and the classT (I ) does not contain a non-singular tiling with
global icosahedral symmetry†. Moreover, it does not even contain a non-singular tiling with
globalD3v symmetry. The tiles ofT (I ) areP‖(3), i.e. icosahedrally projected tetrahedra
T‖ and octahedraO‖. The tetrahedraT‖ show five forms. One of them is degenerate,
which we can simply remove here because they are not needed for the cell construction
[5]. The other four,Ti‖, i = 1, . . . ,4, coincide with the tilesA?‖, B

?
‖ , C

?
‖ , andD?

‖ of the

† Even a singular one is impossible if the 10 translation classes are distinguished, as the group that generateD
(j)
⊥

is the Weyl group of the diagram [11]A3 × A3, so does not allow the embedding ofYh. On the other hand, no
tile has icosahedral symmetry.



Letter to the Editor L145

Figure 1. The Delaunay cellD(j)
⊥ in two board projection.

Figure 2. The tiles ofT (I ), Oi⊥ (i = 1, . . . ,4), in an orthogonal projection.

tiling [3] T ?(2F) (scaled by a factor12). The octahedraO‖ appear in five forms, again one
degenerate; the otherOi‖, i = 1, . . . ,4 are shown in figure 2. The shapes of them are
all double pyramids, point symmetric with respect to the centre of the base. All edges are
parallel to 2-fold symmetry axes of an icosahedron, and only two different edge lengths
occur, 2 = 1

2

√
2/(τ + 2) andτ · 2 , τ the golden ratio†. The generating pyramids ofO2‖

andO4‖ have rectangular bases and small/long lateral edges, respectively; those ofO1‖ and
O3‖ are oblique and based on a small/big square, respectively.

The icosahedrally projected Voronoi cellV⊥(0) forms a dodecahedron with edge length
τ · 2 . It is the vertex window (or acceptance domain) of the LI classT ?(I ). This class

† Note that the smallest inflation factor of the icosahedrally projectedDR
6 is τ , just as forD6.



L146 Letter to the Editor

Figure 3. The unfolded tetrahedraO?
i‖, i = 1, . . . ,4.

contains (up to translations) one tiling with global icosahedral symmetry. The tiles are four
non-degenerate pyramidsT ?i‖, i = 1, . . . ,4, coinciding with four out of the six tiles [4] of
T (2F), and, in addition, four non-degenerate tetrahedra,O?

i‖, i = 1, . . . ,4 (the latter are
shown in figure 3). All edges (ofT ?i‖ andO?

i‖, i = 1, . . . ,4) are either parallel to 3-fold

directions of an icosahedron (—· —) with two different edge lengths©3 = 1
2

√
6/(τ + 2)

and τ · ©3 , or parallel to 5-fold directions (– – –) with three different edge lengths
©5 = 1/

√
2, τ−1 · ©5 and τ · ©5 . Within figure 3, scalings by powers ofτ with

respect to a standard length©5 and©3 are marked.

3. Conclusion

The icosahedral quasicrystals related to theP - and 2F -module, icosahedrally projected from
the Z6 andD6 lattice, respectively, have been experimentally observed (see for example
[12, 13]). No quasicrystals related to theI -module, projected from theDR

6 lattice have been
observed so far. Nevertheless, the above introduced new classes of tilingsT (I ) andT ?(I )
are also of interest for further investigations as mathematical structures.
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